Andrew Bartnik

andrewbartnik5@gmail.com | (214) 801-2540 | Website | GitHub | LinkedIn | Santa Barbara, CA

SUMMARY OF QUALIFICATIONS

- Strong foundation in ML concepts and algorithms (boosting, random forests, deep learning, SVMs).
- Proficient in application of ML algorithms using Python and R libraries (scikit-learn, pytorch, tidymodels).
- Experienced in exploratory data analysis and preparation, visualization, feature engineering techniques.
- Experienced in building and maintaining data pipelines, evaluating and optimizing model performance.
- Comfortable working in a collaborative team environment, strong teamwork and communication skills.

EDUCATION

Master of Environmental Data Science, 4.0 GPA (June 2023)

Bren School of the Environment & Management – University of California, Santa Barbara (UCSB)

<u>Highlighted Coursework</u>: Geospatial Analysis & Remote Sensing, Machine Learning in Environmental Science, Modeling Environmental Systems, Databases (SQL), Statistics for Environmental Data Science

Triple Bachelor, 3.9 GPA – University of Arkansas, Fayetteville (May 2020)

Bachelor of Science and Arts in Environmental Science

Bachelor of Arts in Chemistry | Minor in Physics

Bachelor of Arts in Biology | Minor in Mathematics

<u>Awards</u>: Dean's list (6 semesters), Chancellor's list (4 semesters)

Employment: Research Associate, Kumar Lab (1/20-8/20); Research Associate, Paul Lab (8/17-8/18)

MACHINE LEARNING PROJECTS

Machine Learning Master's Capstone Project | Role: Machine Learning Engineer (12/22–06/23)

Measuring Agricultural Adaptation to Climate Change in Zambia Using Satellite Imagery & Machine Learning

- Used MOSAIKS API, random convolutional features in Pytorch to featurize large-scale satellite imagery of Zambia, extensively cleaned and preprocessed ground-truth data provided by Zambian government.
- Performed bootstrapping, cross-validated ridge regression to predict 28 agricultural variables using scikit-learn. Achieved high model performances on many variables, incorporated spatial block sampling.
- Generalized MOSAIKS data pipeline for featurizing Sentinel 2 satellite imagery, data preprocessing, and approach to modeling variables of interest for researchers interested in MOSAIKS technique.
- Communicated results to client using visualizations and public <u>presentations</u>.

Machine Learning Master's Course Project (2/23–3/23)

Predicting Dissolved Inorganic Carbon (DIC) from Ocean Chemistry using Various Regression Models

- Predicted Dissolved Inorganic Carbon (DIC) concentrations at a high accuracy using temperature, salinity, pH, and other chemical parameters using data collected by CalCOFI.
- Used Gradient Boosting, Random Forests, Decision Trees, KNN, Linear Regression, and SVM to find model with the best predictive power, built all models in both Python and R.

DATA SCIENCE AND RESEARCH EXPERIENCE

Visiting Research Scholar – Blue Marble Space Institute of Science, Seattle, WA (Remote) (9/21–Present)

- Lead team on the processing of data and production of dozens of publication-ready figures using R, assist in manuscript write-up.
- Utilize EQ6 (geochemical modeling software package) to model fluid mixing thermodynamics under 8 possible conditions hypothesized to exist on Saturn's moon, Enceladus.
- Perform subsequent thermodynamic calculations on synthesis of 18 amino acids necessary for life.
- Coordinate weekly meetings with an international team of 5 researchers based worldwide.

ADDITIONAL SKILLS AND PUBLICATIONS

Technical: R, Python, SQL, Google Earth Engine, Microsoft Planetary Computer

Publications: Thermodynamics of Amino Acid Synthesis in Enceladus' Hydrothermal and Seawater Systems. (In progress); Homogeneous nucleation of nitrogen bubbles is unlikely in the lakes on Titan. (Under review) **Certifications:** IBM Data Science, Google Cloud Engineer (In Progress)